Nested recursions with ceiling function solutions

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nested Recursions with Ceiling Function Solutions

Unless otherwise noted, we consider only n > 0. The parameters in (1.1) are all integers satisfying k, pi and aij > 0. Assume c initial conditions R(1) = ξ1, R(2) = ξ2, . . . , R(c) = ξc, with all ξi > 0. Golomb [6] first solved the simplest example of such a non-homogeneous nested recursion, namely, G(n) = G(n− G(n− 1)) + 1, G(1) = 1; see also [7]. In fact, all of the recursions we find with c...

متن کامل

Sums of Ceiling Functions Solve Nested Recursions

It is known that, for given integers s ≥ 0 and j > 0, the nested recursion R(n) = R(n−s−R(n− j))+R(n−2j−s−R(n−3j)) has a closed form solution for which a combinatorial interpretation exists in terms of an infinite, labeled tree. For s = 0, we show that this solution sequence has a closed form as the sum of ceiling functions C(n) = ∑j−1 i=0 ⌈

متن کامل

Nested Recursions, Simultaneous Parameters and Tree Superpositions

We apply a tree-based methodology to solve new, very broadly defined families of nested recursions of the general form R(n) = ∑k i=1R(n − ai − ∑p j=1R(n − bij)), where ai are integers, bij are natural numbers, and k, p are natural numbers that we use to denote “arity” and “order,” respectively, and with some specified initial conditions. The key idea of the tree-based solution method is to asso...

متن کامل

Numerically satisfactory solutions of hypergeometric recursions

Each family of Gauss hypergeometric functions fn = 2F1(a + ε1n, b + ε2n; c + ε3n; z), n ∈ Z , for fixed εj = 0,±1 (not all εj equal to zero) satisfies a second order linear difference equation of the form Anfn−1 + Bnfn + Cnfn+1 = 0. Because of symmetry relations and functional relations for the Gauss functions, many of the 26 cases (for different εj values) can be transformed into each other. I...

متن کامل

Nested Recurrence Relations with Conolly-like Solutions

A non-decreasing sequence of positive integers is (α, β)-Conolly, or Conollylike for short, if for every positive integer m the number of times that m occurs in the sequence is α + βrm, where rm is 1 plus the 2-adic valuation of m. A recurrence relation is (α, β)-Conolly if it has an (α, β)-Conolly solution sequence. We discover that Conolly-like sequences often appear as solutions to nested (o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Difference Equations and Applications

سال: 2012

ISSN: 1023-6198,1563-5120

DOI: 10.1080/10236198.2010.540573